Polynomial modules over the Steenrod algebra and conjugation in the Milnor basis

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Modules over the Steenrod Algebra and Conjugation in the Milnor Basis

Let Ps = F2 [x1, . . . , xs] be the mod 2 cohomology of the s-fold product of RP∞ with the usual structure as a module over the Steenrod algebra. A monomial in Ps is said to be hit if it is in the image of the action A ⊗ Ps → Ps where A is the augmentation ideal of A. We extend a result of Wood to determine a new family of hit monomials in Ps. We then use similar methods to obtain a generalizat...

متن کامل

Unstable modules over the Steenrod algebra revisited

A new and natural description of the category of unstable modules over the Steenrod algebra as a category of comodules over a bialgebra is given; the theory extends and unifies the work of Carlsson, Kuhn, Lannes, Miller, Schwartz, Zarati and others. Related categories of comodules are studied, which shed light upon the structure of the category of unstable modules at odd primes. In particular, ...

متن کامل

On the X basis in the Steenrod algebra

‎Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra‎, ‎where $p$ is an odd prime‎, ‎and let $mathcal{A}$ be the‎ subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers‎. ‎We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$‎.

متن کامل

Truncated Polynomial Algebras over the Steenrod Algebra

MOHAMED ALI It is shown that the classification of polynomial algebras over the mod p Steenrod algebra is an essentially different problem from the classification of polynomial algebras truncated at height greater than p over the Steenrod algebra . 0 . Introduction . Let B = Zp[y2n y2n2, . . . , y2n,] be a polynomial algebra over A(p), the mod p Steenrod algebra, where yen ; has dimension 2ni a...

متن کامل

The Intersection of the Admissible Basis and the Milnor Basis of the Steenrod Algebra

We prove a conjecture of K. Monks 4] on the relation between the admissible basis and the Milnor basis of the mod 2 Steenrod algebra A 2 , and generalise the result to the mod p Steenrod algebra A p where p is prime. This establishes a necessary and suucient condition for the Milnor basis element P(r 1 ; r 2 ; : : : ; r k) and the admissible basis element P t 1 P t 2 : : : P t k to coincide. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1994

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1994-1207540-3